Eggsy Student Sheet ${ }_{\text {cadaped from } \mathrm{ms} \text { Lans ssemene) }}$

PART 5: PUNNETT SQUARES

1. A punnett square tells you the possible genotypes of babies a pair of parents could have.
2. Let's pretend you have 2 parents with the genotype Aa for each.
a. What are the possible alleles the baby can get from Parent

Allele 1a
Allele 1b $1 ?$
b. What are the possible alleles the baby can get from Parent $2 ?$

Allele 2a
Allele 2b
3. Now write the alleles on the top and left side of the Punnett Square. (This is already done for

4. Next fill in each box with the allele from each parent. The first box is done for you.
5. Once complete, record the number of each genotype: AA \qquad Aa \qquad aa \qquad
6. Now calculate the percentages for each genotype using the following equation: \# of genotypes $\div 4 \times 100$.

With parents Aa and Aa, each eggsy baby has these
chances of being born with the genotype: \qquad \% AA \qquad \% Aa
\qquad \% aa
7. Now try on your own, but the parents are AA and Aa.
a. What are the alleles of Parent 1? \qquad
b. What are the alleles of Parent 2? \qquad
c. Fill out the Punnett Square. What chance will their first baby be:
i. $A A$? \qquad
ii. Aa ? \qquad

iii. aa? \qquad
d. If these parents have many many children, what percentage (\%) of these children will be each phenotype? \qquad
8. Another example, but the parents are Aa and aa.
a. What are the alleles of Parent 1 ? \qquad
b. What are the alleles of Parent 2? \qquad
c. Fill out the Punnett Square. What chance will their first baby be:
i. $A A$? \qquad
ii. Aa? \qquad
iii. aa? \qquad
d. If these parents have many many children, what percentage of these children will be each phenotype? \qquad

9. The parents are $\mathbf{A a}$ and $\mathbf{A A}$.
a. What are the alleles of Parent 1 ? \qquad
b. What are the alleles of Parent 2? \qquad
c. Fill out the Punnett Square. What percent chance will their first baby be
i. $A A$? \qquad
ii. Aa? \qquad
iii. aa? \qquad
d. If these parents have many many children, what percentage of these children will be each phenotype? \qquad

10. The final example, but now the parents are and aa.
a. What are the alleles of Parent 1 ? \qquad
b. What are the alleles of Parent 2 ? \qquad
c. Fill out the Punnett Square. What percent chance will their first baby be
i. $A A$? \qquad
ii. Aa ? \qquad
iii. aa? \qquad
d. If these parents have many many children, what percentage of these children will be each phenotype? \qquad

11. If both parents are homozygous recessive, will any of their children have the dominant trait? Why or why not? \qquad
\qquad
12. If both parents are heterozygous and they have 3 children, could their children have different genotypes? Explain your answer.

