	-	population		
_		<u>s</u> will be for each co		
data on the white	•	table below. Then, u	use nasn marks to	put your gro
Phenotype	# of Eggsys	Genotype	# of a	alleles
			В	b
·		g the entire class da		alleles
Complete the dat	a table below using	g the entire class da	# of a	alleles
·		_		alleles b
·		_	# of a	
·		_	# of a	

	er student that has a different <u>phenotype</u> froi	m you.
a. Parent #	1 alleles	
b. Parent #2	2 alleles	
Reproduce to c	reate a new baby. Use the same process we	did before.
a. Randoml	y select one allele from Parent #1	
b. Randoml	y select one allele from Parent #2	
c. Baby #1	genotype:	
d. Baby #1	phenotype:	
Repeat step #7	two more times for a total of 3 babies.	
a. Baby #2	genotype ph	enotype
b. Baby #3	genotypep	henotype
Genotype BB %	<u>Phenotype</u> Blue %	
Bb %	Green %	
	Yellow %	

11. If one parent is homozygous and the other is heterozygous, is it possible for them to have
babies with all 3 phenotypes? Why or why not?
12. Two green parents are surprised when they have a blue and then yellow baby. Explain why
this is possible. Use your vocabulary.

Eggsy Student Sheet (Adapted from Ms. Lau's Science)

Highly Proficient

Create a critter trait that follows INCOMPLETE dominance. <u>Explain</u> what the trait is and how it follows incomplete dominance. <u>Sketch and label</u> all of the phenotypes and genotypes. Show a punnett square for 2 heterozygous parents. (add paper). Make sure the heterozygous trait is a true in-between trait. Your work should be final draft quality.

Patterns: Observed patterns of forms and events guide organization and classification and prompt questions about relationships and the factors that influence them.

Highly Proficient (4)	Proficient (3)	Close to Proficient (2)	Developing (1)
 Critter trait is identified and explained correctly. Critter trait is sketched Work is 'final draft' quality. 	 Understanding of INCOMPLETE DOMINANCE is shown. Lab is complete and mostly correct. Analysis questions are complete and 	 □ Some knowledge of INCOMPLETE DOMINANCE is shown □ Some information is incorrect □ Work is incomplete □ Work needs more detail. 	☐ Little to no understanding is shown ☐ Lab is mostly incomplete and/or incorrect.