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SparkFun Inventor's Kit 
Example sketch 06

PHOTORESISTOR

  Use a photoresistor (light sensor) to control the brightness
  of a LED.

Hardware connections:

  Photo resistor:

    Connect one side of the photoresistor to 5 Volts (5V).
    Connect the other side of the photoresistor to ANALOG pin 0.
    Connect a 10K resistor between ANALOG pin 0 and GND.

    This creates a voltage divider, with the photoresistor one
    of the two resistors. The output of the voltage divider
    (connected to A0) will vary with the light level.

  LED:

    Connect the positive side (long leg) of the LED to
    digital pin 9. (To vary the brightness, this pin must
    support PWM, which is indicated by "~" or "PWM" on the
    Arduino itself.)

    Connect the negative side of the LED (short leg) to a
    330 Ohm resistor.

    Connect the other side of the resistor to GND.
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// As usual, we'll create constants to name the pins we're using.
// This will make it easier to follow the code below.

const int lightsensor = 5;
const int ledPin = 9;

// We'll also set up some global variables for the light level:

int lightLevel, high = 0, low = 1023;


void setup()
{
  // We'll set up the LED pin to be an output.
  // (We don't need to do anything special to use the analog input.)

  pinMode(ledPin, OUTPUT);
}


void loop()
{
  // Just as we've done in the past, we'll use the analogRead()
  // function to measure the voltage coming from the photoresistor
  // resistor pair. This number can range between 0 (0 Volts) and
  // 1023 (5 Volts), but this circuit will have a smaller range
  // between dark and light.

  lightLevel = analogRead(lightsensor);

  // We now want to use this number to control the brightness of
  // the LED. But we have a problem: the analogRead() function
  // returns values between 0 and 1023, and the analogWrite()
  // function wants values from 0 to 255.

  // We can solve this by using two handy functions called map()
  // and constrain(). Map will change one range of values into
  // another range. If we tell map() our "from" range is 0-1023,
  // and our "to" range is 0-255, map() will squeeze the larger
  // range into the smaller. (It can do this for any two ranges.)

  // lightLevel = map(lightLevel, 0, 1023, 0, 255);

  // Because map() could still return numbers outside the "to" 
  // range, (if they're outside the "from" range), we'll also use
  // a function called constrain() that will "clip" numbers into
  // a given range. If the number is above the range, it will reset
  // it to be the highest number in the range. If the number is
  // below the range, it will reset it to the lowest number.
  // If the number is within the range, it will stay the same.

  // lightLevel = constrain(lightLevel, 0, 255);

  // Here's one last thing to think about. The circuit we made
  // won't have a range all the way from 0 to 5 Volts. It will
  // be a smaller range, such as 300 (dark) to 800 (light).
  // If we just pass this number directly to map(), the LED will
  // change brightness, but it will never be completely off or
  // completely on.

  // You can fix this two ways, each of which we'll show
  // in the functions below. Uncomment ONE of them to
  // try it out:

  manualTune();  // manually change the range from light to dark

  //autoTune();  // have the Arduino do the work for us!

  // The above functions will alter lightLevel to be cover the
  // range from full-on to full-off. Now we can adjust the
  // brightness of the LED:
if (lightLevel > 175) {
  lightLevel=255;
}
  analogWrite(ledPin, 255-lightLevel);

  // The above statement will brighten the LED along with the
  // light level. To do the opposite, replace "lightLevel" in the
  // above analogWrite() statement with "255-lightLevel".
  // Now you've created a night-light!
}


void manualTune()
{
  // As we mentioned above, the light-sensing circuit we built
  // won't have a range all the way from 0 to 1023. It will likely
  // be more like 300 (dark) to 800 (light). If you run this sketch
  // as-is, the LED won't fully turn off, even in the dark.

  // You can accommodate the reduced range by manually 
  // tweaking the "from" range numbers in the map() function.
  // Here we're using the full range of 0 to 1023.
  // Try manually changing this to a smaller range (300 to 800
  // is a good guess), and try it out again. If the LED doesn't
  // go completely out, make the low number larger. If the LED
  // is always too bright, make the high number smaller.

  // Remember you're JUST changing the 0, 1023 in the line below!

  lightLevel = map(lightLevel, 175, 500, 0, 255);
  lightLevel = constrain(lightLevel, 0, 255);

  // Now we'll return to the main loop(), and send lightLevel
  // to the LED.
} 


void autoTune()
{
  // As we mentioned above, the light-sensing circuit we built
  // won't have a range all the way from 0 to 1023. It will likely
  // be more like 300 (dark) to 800 (light).

  // In the manualTune() function above, you need to repeatedly
  // change the values and try the program again until it works.
  // But why should you have to do that work? You've got a
  // computer in your hands that can figure things out for itself!

  // In this function, the Arduino will keep track of the highest
  // and lowest values that we're reading from analogRead().

  // If you look at the top of the sketch, you'll see that we've
  // initialized "low" to be 1023. We'll save anything we read
  // that's lower than that:

  if (lightLevel < low)
  {
    low = lightLevel;
  }

  // We also initialized "high" to be 0. We'll save anything
  // we read that's higher than that:

  if (lightLevel > high)
  {
    high = lightLevel;
  }

  // Once we have the highest and lowest values, we can stick them
  // directly into the map() function. No manual tweaking needed!

  // One trick we'll do is to add a small offset to low and high,
  // to ensure that the LED is fully-off and fully-on at the limits
  // (otherwise it might flicker a little bit).

  lightLevel = map(lightLevel, low+30, high-30, 0, 255);
  lightLevel = constrain(lightLevel, 0, 255);

  // Now we'll return to the main loop(), and send lightLevel
  // to the LED.
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