### **BUILDING PRACTICE: MAKING A BALANCE**

Pivot

#### VOCABULARY

Criteria: This is basically your goal for the project. Required design elements that are used to evaluate the success of a design.

**Constraint:** things that control or put limits/restrictions on design goals. This includes time, materials, etc.

**Priority:** a design element that is regarded as <u>more important than</u> another. **Modification:** a change in your design meant to improve performance.

# DAY 1

- I. BUILDING A BALANCE
- <u>Criteria</u> build a structure that can balance 2 equal weights on each side. Make sure the pivot is in the middle of your model. Also, make sure your model has a place for you to hold it, when you use it. The pivot should be the only part of your model that moves.
- 2. <u>Constraint</u> you have until the end of the period tomorrow (time)
- 3. Priority SIMPLE, STRONG, SYMMETRICAL

#### II. TESTING YOUR DESIGN

- 1. Place weight on each side. Your balance should hold the weight securely for at least 10 seconds (criteria).
- 2. <u>Modification</u>: if it doesn't satisfy #1, make a change to your balance to improve it. Try **not** to take the whole model apart. Try to make one change at a time.
- 3. When you have a working balance, answer the following questions.
  - 1. What are the strengths of your design?
  - 2. What are the weaknesses of your design? What would you like to improve?



#### **III. SKETCHING A DESIGN ELEMENT**

- 1. You will be rebuilding and improving your design tomorrow.
- 2. Choose the parts of your design that you want to use to rebuild your model.
- 3. Sketch them in the box on the previous page. Your sketch should contain enough detail to be able to recreate it.

### DAY 2

#### IV. MODIFICATION 1: REBUILD YOUR BALANCE

- 1. Modification: Try to make an improvement in your design.
- 2. If you didn't get a balance built yesterday, try to use the successful elements of you design.

Catapults are a type of lever. The **load** is what you want to catapult. The **<u>effort</u>** is where force is applied to catapult the load. The **<u>pivot</u>** lies near the middle. You can move the pivot either closer to the pivot or closer to the load to find that perfect sweet spot for your catapult.

# Predict

### Will the object (load) fly farther if the pivot is closer to the effort or the load?



## Test your model

Using your **balance** set up, test it like a catapult three times. Pick one side as the **load** and the other as the **effort**. Measure the distance (cm) the object flies. Please hold the catapult down. It should not fly.

| Test 1 | Test 2 | Test 3 |
|--------|--------|--------|
| cm     |        |        |

Move the pivot **<u>closer to the effort</u>**. Test your model.

| Test 1 | Test 2 | Test 3 |
|--------|--------|--------|
|        |        |        |

Move your pivot **<u>closer to the load</u>**. Test your model.

| Test 1 | Test 2 | Test 3 |
|--------|--------|--------|
|        |        |        |

### Compare your results to your prediction.

| Highly Proficient (4)                                                                                                                                                          | Proficient (3)                                                                                                                                                                                                | Close to Proficient (2)                                                                                                              | Developing (1)                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| <ul> <li>Design<br/>All requirements for a 3, plus:</li> <li>I can modify my balance to make it a catapult.</li> <li>I can test my catapult to check my prediction.</li> </ul> | <ul> <li>Design</li> <li>I can design a working balance.</li> <li>I can provide sketches for design solutions.</li> <li>I can identify and describe the strengths and/or weaknesses of the design.</li> </ul> | <ul> <li>Design</li> <li>I can test my design at least once.</li> <li>I can give basic information about my first design.</li> </ul> | <ul> <li>Design</li> <li>No evidence of design before and after modification.</li> <li>Not attempted</li> </ul> |

### Target Challenge

- 1. Choose a distance that you want to hit consistently.
- 2. Make a target out of LEGO to put at that distance.
- 3. See how many times you can hit the target out of 10 attempts.